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a b s t r a c t

Storage of large amounts of carbon dioxide (CO2) in deep geologic formations for green-

house-gas mitigation is gaining momentum and moving from its conceptual and testing

stages towards widespread application. In this work we explore various optimization

strategies for characterizing surface leakage (seepage) using near-surface measurement

approaches such as accumulation chambers and eddy covariance towers. Seepage char-

acterization objectives and limitations need to be defined carefully from the outset espe-

cially in light of large natural background variations that can mask seepage. The cost and

sensitivity of seepage detection are related to four critical length scales pertaining to the size

of the: (1) region that needs to be monitored; (2) footprint of the measurement approach, and

(3) main seepage zone; (4) region in which concentrations or fluxes are influenced by

seepage. Seepage characterization objectives may include one or all of the tasks of detecting,

locating, and quantifying seepage. Each of these tasks has its own optimal strategy.

Detecting and locating seepage in a region in which there is no expected or preferred

location for seepage nor existing evidence for seepage requires monitoring on a fixed grid,

e.g., using eddy covariance towers. The fixed-grid approaches needed to detect seepage are

expected to require large numbers of eddy covariance towers for large-scale geologic CO2

storage. Once seepage has been detected and roughly located, seepage zones and features

can be optimally pinpointed through a dynamic search strategy, e.g., employing accumula-

tion chambers and/or soil-gas monitoring. Quantification of seepage rates can be done

through measurements on a localized fixed grid once the seepage is pinpointed. Background

measurements are essential for seepage detection in natural ecosystems. Artificial neural

networks are considered as regression models useful for distinguishing natural system

behavior from anomalous behavior suggestive of CO2 seepage without need for detailed

understanding of natural system processes. Because of the local extrema in CO2 fluxes and

concentrations in natural systems, simple steepest-descent algorithms are not effective and

evolutionary computation algorithms are proposed as a paradigm for dynamic monitoring

networks to pinpoint CO2 seepage areas.
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1. Introduction

1.1. Global climate change motivation

The current trend of carbon dioxide (CO2) emissions in the

atmosphere has been associated with an increase in the

average land and ocean temperatures, and represents an

increasing danger for the stability of Earth’s climate (e.g.,

Hansen, 2004). To address this concern, various carbon

capture and storage (CCS) technologies have been proposed

to capture CO2 at point sources such as power plants, cement

plants, and oil refineries to avoid emissions into the atmo-

sphere. Among these, capture with sequestration in deep

geologic formations (such as depleted oil and gas reservoirs,

and brine formations) appears to be promising (IPCC, 2005).

In this work, we focus on the optimization of near-surface

monitoring and measurement strategies for characterizing

seepage from geologic storage sites. This study presupposes

the importance of seepage characterization in general without

specifying which particular objectives, e.g., safety, environ-

mental impact, storage verification, etc., are motivating any

particular effort (see e.g., Benson, 2006).

1.2. The monitoring and measurement challenge

Leakage to the atmosphere of a significant fraction of injected

CO2 would constitute a failure of a geologic CO2 storage project

from a greenhouse gas mitigation perspective (Hepple and

Benson, 2005). In the terminology of Oldenburg and Unger

(2003, 2004), leakage is the escape of (some fraction of) CO2

from the intended subsurface storage reservoir to other

regions of the subsurface, while seepage is the escape of the

CO2 into the atmosphere. Seepage may include high-flux

discharges through wells and faults or low-flux, diffuse

seepage through the land surface. The fundamental quantities

we consider monitoring and measuring to characterize

seepage are flux or concentration where both can be of CO2

alone or of a co-injected tracer, or some isotopic fraction

indicative of the injected CO2. In order to ensure safety and

effectiveness of geologic storage sites, monitoring needs to be

carried out at some level of detail so that seepage can be

detected and roughly located. If monitoring detects CO2

seepage, then strategies for additional measurements to

pinpoint and quantify the seepage event(s) can be deployed.

In a world of limited resources, the surface monitoring and

measurement challenge is to ensure the effectiveness and

safety of CCS through field measurements with minimal

economic and near-surface environmental impact.

1.3. The seepage detection problem

In order to achieve an effective mitigation of CO2 greenhouse-

gas effects by sequestering CO2, billions of tons of CO2 need to be

safelystoredinthe next50years (Pacala and Socolow, 2004).The

typical annual CO2 emission from a 1 GW coal-fired power plant

(sufficient to satisfy the electricity needs of approximately one

million people) is approximately 1010 kg year�1. Assuming that

the CO2 from this single power plant is stored in a supercritical

state with a density of 700 kg/m3, this corresponds to a volume

equal to 1.4 � 107 m3. Assuming a thickness of the geologic
storage region equal to 10 m, porosity equal to 10%, and pore

occupancy equal to 10%, the radius of the corresponding

cylindrical volume is about 2 km after 1 year, and after 30 years

of injection will be inthe order of tensofkm. Becauseof the large

areas of the subsurface that may be in contact with the injected

CO2, there is concern for leakage along faults in the cap rock or

through abandoned wells. There is also some concern among

the public that geologic CCS is potentially dangerous due to the

potential for CO2 seepage (Shackley et al., 2007).

From these considerations, monitoring will be an essential

component of CCS projects. Hepple and Benson (2005)

effectively described the scope of such a monitoring program

as follows:

‘‘An effective monitoring program should focus first on detecting

whether or not emissions are occurring. Once emissions, or the

possibility for emissions are detected, a more intense effort can be

made to precisely locate and quantify them. Designing a

monitoring program in the first instance to quantify emission

rates would be unnecessarily costly and, if emissions were to

occur, unlikely to provide as reliable data as a tailored program

would be.’’

In this work, we adopt the above philosophy, although we

distinguish monitoring as the activity involved in detecting and

locating seepage areas from directed measurements that are

made to pinpoint and quantify seepage once it is detected. We

emphasize that in order to be effective at detecting seepage, a

monitoring program must be affordable enough to carry out

and therefore requires optimization. Further, we elucidate

how, from a design point of view, the detection problem needs

to be kept distinct from the optimization of the detection problem.

Note that this paper is focused on monitoring and measure-

ments for detecting, locating, and quantifying seepage at the

land surface and does not address characterizing leakage out

of the primary storage reservoir. Different approaches,

primarily pressure monitoring and geophysical techniques

(e.g., Myer et al., 2002) are needed to detect leakage from the

storage reservoir and are not the subject of this paper.
2. Static and dynamic monitoring networks

2.1. Assumptions and strategies

There are two possible approaches to the analysis of seepage.

The first approach is to assume that seepage is present. In this

case, we need to detect, locate, pinpoint, and quantify the

seepage, and we need to find optimal ways to carry out these

tasks. The second point of view is to assume that seepage is

not necessarily present. In this case, the tasks are to identify

the minimum target for detection, and use the best strategy to

optimize detection. The first approach could lead to exorbitant

costs in the case that monitoring is carried out in the attempt

to detect a seepage signal that is non-existent. The second

approach is the one we adopt and is the most applicable to

geologic CCS for which seepage is going to be very unlikely due

to careful site selection and operations. It is also essential to

differentiate between the (i) potential for, (ii) the possibility of,

and (iii) actual seepage. The difference is not purely academic
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as it implies widely different deployment strategies as des-

cribed below. Note that we assume that seepage has reached a

pseudo-steady-state in both the static and dynamic network

discussions below.

2.2. Static networks

In case (i) (above), the potential for seepage, a priori information

about the site (e.g., presence of a fault in the caprock, unsealed

wellbores, seismicity of the area) will be available and

suggestive of potential seepage. In this case we need to design

a static monitoring network (such as a grid of eddy covariance

(EC) towers) for the area of potential leakage. Based on the cost

of the corresponding monitoring network, a decision would

have to be made about whether the cost of the network allows

adoption of that particular site in the first place.

Static monitoring networks require optimization only in a

loose sense. In fact, the sensitivity required of the monitoring

network will determine the spacing of the measurements and

their frequency. Finite spacing and measurement frequency

give rise to systematic error in a static network applied to a

dynamic and heterogeneous system. A static monitoring

network is defined by either one of two criteria: (1) a detection

limit (e.g., maximum allowed flux or integrated discharge)

imposed upon the design of the network; or (2) a maximum

cost per unit area imposed upon the design of the network.

These two interrelated bounds on the optimization of the grid

measurement density may or may not result in creating an

effective monitoring network.

2.3. Dynamic networks

In case (ii), the possibility of seepage, we assume that we are

operating already at some injection site for which we have

evidential support of anomalous CO2 flux or concentration

relative to a reliable baseline data set (e.g., CO2 fluxes or

concentrations on a fixed grid at the surface, or pressure

measurements at the injection borehole do not conform to

theoretical predictions). It is important to note that the

anomaly could be natural in origin and unrelated to the CO2

storage site. Regardless of the cause of the anomaly, we need

to put in place a dynamic approach to pinpoint its location. We

define a dynamic (as opposed to a static) network as a strategy of

directed measurements aimed at precisely locating (pinpoint-

ing) anomalies. For this reason, establishing a dynamicnetwork

is a good strategy only if we have a priori information about

the existence of anomalies. Dynamic networks adapt future

spatial sampling and frequency of measurement according to

the history of measurements. An example of a dynamic

network might be the tracking of a CO2 soil-gas concentration

or flux gradient until a maximum concentration is found.

Dynamic networks are more efficient at precisely locating CO2

seepage because they can eliminate the systematic errors that

are typical of static networks.

Finally, in the case of actual seepage (case iii), we need to

distinguish the following two sub-cases: (a) seepage has been

pinpointed and quantified, but the fluxes or concentrations

are not a cause of concern for safety or effectiveness; (b)

seepage has been pinpointed and assessed, and its levels are

unacceptable in terms of safety, environmental impact, or
effectiveness. In (a), the two main stakeholders involved are

the carbon credit regulator and the operator. In (b), though

arguably the most dramatic in its practical consequences,

such seepage is the easiest case for monitoring. The

consequences of a CO2 geyser, of a dying forest, or of animal

losses and human casualties are easily assessed without the

need of a monitoring network, much less an optimized one.

The practical consequences of such an occurrence will not be

any different than for any other industrial accident, i.e.,

shutdown of operations, access restrictions, and deployment

of mitigation and remediation actions. In this case, optimiza-

tion efforts shift from monitoring to mitigation efforts.
3. Measurements and length scales

3.1. Instruments

For the sake of this study on characterizing seepage in the near-

surface environment, we consider deployment of standard

instruments for concentration and flux measurement. In

particular, we presume that soil-gas samples can be taken

from shallow soil and analyzed using infrared absorption

techniques to determine CO2 concentration in the soil gas. In

addition, Light Detection and Ranging (LiDAR) can be used

above ground to measure CO2 concentration in the air. For flux

measurements, we assume that accumulation chamber (AC)

approaches are used to measure local CO2 flux from the ground

surface, and eddy covariance can be used for measuring surface

fluxes over larger areas. Because each instrument has its own

strengths and uses, monitoring and measurement strategies

are tightly linked to the choice of instrument. Reviews of

measurement and monitoring instrumentation relevant to

geologic CCS have been presented elsewhere (Oldenburg et al.,

2003; IPCC, 2005; Shuler and Tang, 2005).

3.2. Spatial support

When addressing CO2 monitoring measurements, it is

essential to consider the spatial support of the measurement.

For instance, AC measurement may only be representative of

an area of tens of square centimeters (Chiodini et al., 1998); a

LiDAR measurement represents an integral measure along a

line (Radziemski et al., 1987; Schlessinger, 1995; Shuler and

Tang, 2005); an EC tower yields an average over some footprint

area (Anderson and Farrar, 2001; Baldocchi and Wilson, 2001;

Massmann and Lee, 2002; Foken and Wichura, 1996; Gouldin

and Crill, 1997). Each of these measurement spatial support

scales has characteristic advantages and disadvantages.

While a point measurement precisely addresses conditions

at some given spatial point, a large number of point

measurements may be necessary to obtain an adequate

representation of a given area. On the other hand, EC gives

an integral value over a surface area, albeit of varying size and

location depending on atmospheric conditions. In other

words, if the seepage area has a small footprint dimension,

EC can be used to detect an anomaly without being necessarily

able to precisely locate it. Point measurements can be more

precise in locating and quantifying seepage, but heterogeneity

complicates interpretation and spatial integration. The same



Fig. 1 – The schematic illustrates different length scales

involved in the monitoring process. Lx is a measure of the

maximum extent of the monitoring area; Lm are measures

of monitoring footprints; Li are measures of the area of

influence around the seepage area; Ls is the scale of the

main seepage area.
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problem described for flux for EC holds also for concentration

measured using LiDAR which provides an integral over a line

measurement.

For all of the above reasons, it is useful to define typical

ratios of spatial scales to elucidate effectiveness and sensi-

tivity of different monitoring and measurement approaches.

Monitoring systems must be characterized by at least four

length scales as follows:
� L
x, the typical linear dimension of the maximum extent of

the region of investigation;
� L
m, the typical linear dimension of the footprint of the

monitoring approach;
� L
s, the linear dimension of the main area of seepage;
� L
Fig. 2 – Model of net CO2 fluxes showing hourly variation

for conditions similar to the ones of the Morgan Monroe

State Forest, Indiana (USA). Average night-time values are

shown in red.
i, the typical linear dimension of the area influenced by

seepage.

Fig. 1 illustrates these four length scales with shading to

represent deviations from baseline fluxes or concentrations.

Two different Lm scales are shown to represent, e.g., the

difference between EC and AC approaches. The lightest gray

indicates noise-level deviations from the baseline and

represents the region where the baseline is evaluated. The
intermediate shade indicates an area with significant devia-

tions from the baseline that are increasing towards the darkest

area, a region where there are large deviations due to seepage.

Li is an important length scale for point and linear measure-

ments as it defines the region over which a gradient search is

possible.

If we assume that the dynamic search is started inside the

area of influence (of length scale Li) and we follow some

effective search direction, we are certain that we will detect

the seepage anomaly represented by the dark region of length

scale Ls. On the other hand, if the starting point for the

dynamic search is very far away from the area of influence,

there is no possibility of evaluating a gradient and therefore no

basis for a preferred search direction to pinpoint the seepage

anomaly of length scale Ls. Furthermore, if Ls � Li, there is very

little chance that an observer monitoring points far away from

the seepage area will eventually reach the anomaly in a simple

dynamic search. If the anomaly is detected, seepage can be

quantified by increasing the density of measurements in its

immediate proximity.

To make these length scale considerations more quanti-

tative, it is useful to assume a simplified conceptual model of

the storage reservoir in which the injected CO2 volume is

distributed uniformly in the pore-space and where buoyancy

and dissolution effects are neglected. We also assume that the

CO2 background is due to photosynthesis and respiration

which typically show significant diurnal and daily variations

as functions of solar radiation (in its direct and diffuse

components), meteorological conditions (e.g., precipitation,

wind speed and direction, humidity, air pressure), soil, and

vegetation type. Anthropogenic carbon sources such as those

derived from neighboring industrial or transportation activ-

ities may also significantly affect background CO2 levels.

Temporal variations in the CO2 fluxes occurring at a given

location can be de-trended by standard signal processing tools

such as Fourier or wavelet transforms to discriminate long-

term trends, and cycles and anomalies can be detected by

means of a de-noising process (Lewicki et al., 2005).

Fig. 2 shows simulations of net CO2 flux performed with the

ISOLSM model (Riley et al., 2002, 2003) for the typical

conditions of the Morgan-Monroe State Forest, Indiana, USA



Table 1 – Lm (m) after 25 years and ntower (in parentheses)
for jr = 5 mmol mS2 sS1 as a function of l and release
fraction R from CO2 storage for a 1 GW coal-fired power
plant

R l = 2 l = 5 l = 10

10�2 19,000 (1) 9500 (2) 6327 (3)

10�3 6,000 (4) 3000 (13) 2000 (29)

10�4 1,900 (32) 950 (127) 632 (284)

Table 2 – Lm (m) after 25 years and ntower (in parentheses)
for jr = 20 mmol mS2 sS1 as a function of l and release
fraction R from CO2 storage for a 1 GW coal-fired power
plant

R l = 2 l = 5 l = 10

10�2 9500 (2) 4700 (6) 3160 (12)

10�3 3000 (13) 1500 (51) 1000 (114)

10�4 950 (127) 475 (505) 316 (1136)
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(Ehman et al., 2002). The simulations reproduce the very large

diurnal variations in the net CO2 flux that are typically

observed in field conditions, and the more regular night-time

daily evolution (in red) of respiration. The annual average

night-time respiration flux for this forest is thus on the order of

jr = 5 mmol m�2 s�1, and this sets a level of sensitivity for any

anomalous measurements of CO2 flux in this area.

We assume now an injection program designed for a 1 GW

coal-fired power plant, which corresponds to a mass M

injection rate of CO2 �1010 kg/year. The molar injection rate

I is equal to

I ¼ 1010

3:1536� 107 ðkg=sÞ 1

44� 10�3
ðmol=kgÞ

� 7:2� 103 ðmol=sÞ: (1)

If we assume that the formation volume occupied by CO2

is equal to a cylinder of radius r (regardless of the actual

number of wells needed to achieve this injection rate) and

volume V = Ah = pr2h, the radius as a function of injection rate

is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M N
n po rph

s
(2)

where N is the number of years of injection. Assuming a

formation thickness h = 100 m, porosity n = 0.1, pore occu-

pancy po = 0.1, and a density for the supercritical CO2 equal

to r = 700 kg m�3, we obtain a radius of r�2 km after 1 year and

11 km after 25 years. It has been suggested that annual losses

due to leakage must be less than 0.1% (10�3/year) for the CCS

process to be effective if CCS is deployed at a large scale

(Hepple and Benson, 2005). This maximum annual release

fraction (R) is not the amount of CO2 that will leak, but rather

an upper limit on leakage below which storage is still effective

as an approach for climate change mitigation. In order to be

detectable, the allowed seepage flux (ja) should be significantly

larger than the average respiration flux (jr) by an amount given

by an amplification factor (l) where l = (ja + jr)/jr > 1. The

amplification factor is a measure of the precision with which

seepage flux can be distinguished from the background

respiration flux. If a very robust and precise method can detect

seepage (ja) at levels on the order of jr, then l would be

approximately equal to 2. Using the definition of the seepage

flux

ja ¼
R I N

Ai
� R I N

L2
i

(3)

and substituting the definition of l for ja in Eq. (3), we obtain an

expression for the order of magnitude of Lm needed to detect a

seepage flux for a given l:

Lm� Li�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R I N
l jr � jr

s
: (4)

Eq. (4) states that the EC measurement footprint required to

detect the seepage flux is a function of the annual seepage

rate, the number of years of injection, amplification factor, and

background respiration flux. Note that in this analysis seepage

is not required to start contemporaneously with injection.
Assuming that R = 10�3 year�1, I = 7.2 � 103 mol/s,N = 25 years,

l = 10, and jr = 5 mmol m�2 s�1, we obtain Lm � 2 km. The value

of Lm would reduce to 632 m for a value of R = 10�4. From these

simple arguments, we can deduce that an EC network with a

fixed measurement sensitivity needs to have a spacing smaller

or equal to the minimum Lm. Assuming that the CO2 plume

spreads uniformly around the injection well, the number of EC

towers (ntower) needed to detect seepage around the well with

amplification l is given by the function

ntower ¼ ceiling
r

Lm

� �2
 !

(5)

Note that because both r and Lm are proportional to t1/2 (Eqs. (2)

and (4)), ntower is invariant with time. At early times, the towers

would be smaller and clustered more tightly than at later

times. The number of EC towers for the cases presented above

are 29 and 284 for the R = 10�3 and 10�4 cases, respectively.

The results for Lm at t = 25 year and the corresponding

number of EC towers needed are shown in Table 1 for different

combinations of the allowable leakage rate and amplification

factor with a background respiration flux (jr) of 5 mmol m�2 s�1,

porosity of 0.1, pore occupancy of 0.1, reservoir thickness of

100 m, and CO2 injection rate of 1010 kg/year. Table 2 shows

similar results for jr = 20 mmol m�2 s�1. As shown in Tables 1

and 2, the number of EC stations becomes very large if it is

necessary to detect very small seepage rates at large amplifica-

tion factors (l) above background fluxes. Note that the number

of EC towers in Tables 1 and 2 are based solely on Lm without

regard for practical limitations on EC tower height which put

limits on measurement footprint. With novel monitoring

approaches as discussed below, seepage at small values of

amplification factor may be detectable thereby reducing costs

by reducing the number of monitoring stations. The detection

limit for EC measurements in biologically active areas may be as

low as 2.7 mmol CO2 m�2 s�1 (10 mmol C m�2 s�1) above back-

ground respiration CO2 exchanges (Miles et al., 2005; Hagen

et al., 2006). Finally, the numbers derived in this analysis should

be considered valid only in an order-of-magnitude sense and
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subject to change depending on local site-specific properties

and processes.
Fig. 3 – False-color satellite photo of the virtual injection

site. The image has been altered to extract vegetation

levels by analyzing the green hues.
4. Mechanistic vs. artificial neural network
models

4.1. Introduction

The length-scale analysis presented above is based on some

grossly simplifying assumptions. In reality, the shape of the

CO2 plume depends on a number of hydrogeologic, geome-

chanical, topographical, geochemical, and atmospheric prop-

erties that have not been taken into consideration when

deriving estimates of number of stations needed for the static

monitoring network. Constraints on geomechanics, for

instance, put limits on the maximum size of a disruptive

leak as the maximum injection rate can be bounded by the

formation fracturing limit. Hydrogeologic properties such as

formation permeability, soil diffusivity, and water saturation

play a key role in leakage plume evolution, and hence on the

final shape and size of the seepage footprint. Vadose zone

thickness influences soil water distribution, and hence the

distribution of the CO2 fluxes and concentrations through

capillary effects, local distribution of soil and air temperature,

solar radiation, and wind exposure. Additionally, topography

plays a fundamental role in the distribution of the CO2

released into the near-surface atmosphere by channeling the

denser-than-air CO2 in valleys, or by wind-induced dispersion

in flat areas (Oldenburg and Unger, 2004). If we take into

account the variability in CO2 fluxes that will arise in natural

systems and correlate it to easily measured system properties

(e.g., topography), we can detect anomalies that may be due to

seepage without having to rely on a large amplification factor.

By using advanced monitoring approaches as discussed in this

section, the number of stations (e.g., EC towers) in a fixed grid

can be reduced.

4.2. Mechanistic models

To investigate a more realistic case of seepage characterization

that includes a realistic topography and geology, we selected a

hypothetical injection site in which we performed numerical

simulations of CO2 seepage. A false-color satellite photo image

of the virtual site is shown in Fig. 3. This domain (Fig. 3) would

have been identified through EC monitoring at a larger scale (Lx)

as a subregion in which an anomaly was detected in the course

of seepage characterization. A 3D numerical simulation of the

virtual site was carried out with TOUGH2 (Pruess et al., 1999)

using a research module applicable for CO2–air–water mixtures

(Oldenburg and Unger, 2003, 2004) to calculate water saturation

assuming a water table with depth ranging from 15 to 35 m and

uniform rainfall infiltration of 100 cm/year. Uniform porous

medium properties were assigned to emphasize the effects of

topographic variability. This simulation was carried out to

provide a challenging CO2 seepage detection problem rather

than to elucidate hydrogeologic or CO2 transport processes, and

therefore we omit details of the calculation. A small flux of CO2

(2.3 mmol m�2 s�1 (10�7 kg m�2 s�1)) was imposed uniformly at

the top of the water table to model background CO2 flux,
whereas in a smaller region (Ls � 200 m) we imposed a 20-times

higher flux intended to simulate the effect of localized CO2

seepage such as might occur through a leaking well or a point

source created by the intersection of two faults. With reference

to Fig. 1, Li � Ls in this case and the background is noisy making

pinpointing of the seepage area very challenging.

The simulation results are shown in Fig. 4. As shown in

Fig. 4b, the soil water saturation correlates strongly with the

elevation map (Fig. 4a) as expected for a gravity-capillary

equilibrium process. Fig. 4c shows the CO2 concentration map

at a soil depth of 10 cm which exhibits a high degree of

correlation with the soil-water saturation. At XY coordinates

(1000 m, 800 m), the footprint of the seepage anomaly (red

colors) that was imposed as a 20-fold greater CO2 flux at the

water table is observed. We note that CO2 fluxes (not shown)

correlate almost one-to-one with the concentration map. Fig. 4d

shows the superposition of the CO2 concentration from the

TOUGH2 numerical simulations with a vegetation CO2 con-

centration arbitrarily imposed based on the satellite picture of

the site shown in Fig. 3. The respiration-derived CO2 concen-

tration effect was arbitrarily defined to be a function of the level

of green of the satellite photo. A map of the ‘‘hue’’ green

channel (0 < w < 1) was extracted from the satellite photo, and

the respiration concentration arbitrarily defined as cr = 0.3

exp(�(1 � w)). The reason for adding this particular vegetation

component was to include complex spatial features which were

independent of the topographic features to which soil moisture,

and CO2 concentration and flux were strongly correlated.

Although we have used simulations of a virtual site, we

expect that there will be correlations between soil-water



Fig. 4 – TOUGH2 simulations for the virtual site. (a) Elevation map of the virtual site; (b) soil-water saturations at 10 cm depth;

(c) CO2 concentration levels at 10 cm depth derived from the fluxes imposed at the water-table level; (d) super-position of

the CO2 concentration in (c) and elaboration of the vegetation signal depicted in Fig. 3.
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saturation, vegetation type, and CO2 fluxes and concentra-

tions in actual monitoring applications. Other interesting

correlations with other independent variables (e.g., solar

radiation, terrain slope and orientation, soil organic carbon

content) need to be explored in future studies. Such a

mechanistic approach to the CCS problem, however, cannot

be easily adapted across different sites. Moreover, each site-

specific model will need an expensive characterization

effort to understand and model the relevant active physical

processes.

In practice, however, it will not be necessary to find the

‘‘universal’’ model for all storage sites. Instead, the concern

will be for a particular site under specific conditions. In other

words, what is needed is an easily parameterizable model

that, given a set of measurements over some independent

variables, will return the background CO2 flux level. Depar-

tures from this model prediction will then be considered flux

‘‘anomalies’’ that can be investigated further to identify

seepage events and to pinpoint and quantify.

4.3. Artificial neural network models

A growing body of knowledge and research is concerned with

the issue of finding anomalies in experimental signals, a

discipline that goes under the general name of novelty

detection. Novelty detection deals with the identification of

new or unknown data that a machine-learning system is not

aware of during training (Markou and Singh, 2003a,b). Novelty

detection treats anomalies in two ways, namely stochastically

(e.g., parametric and non-parametric tests) and determinis-

tically (e.g., neural network classifiers). In both instances,

automated computer procedures are designed to perform the
task of spotting anomalies in regular patterns with combina-

tions of statistical and neural network-based approaches.

Non-linear regression models such as artificial neural net-

works (ANNs) appear to be very useful for finding anomalous

behavior in complex systems such as ecosystems subject to

potential CO2 seepage. In the context of length scales and

amplification factors (l), ANNs can indicate anomalies at

lower l providing the opportunity to decrease the number of

monitoring stations in a static network.

Originally devised to function in analogy to the way our

brains function, ANNs prove to be very effective in typical

tasks that are easy for a human operator, such as voice, visual,

and habit recognition but where typical procedural algorithms

fail. Typical tasks to which ANNs have been applied are (i)

regression analysis, (ii) pattern recognition and novelty

detection, and (iii) data filtering, clustering, separation, and

compression. What makes ANNs so unique with respect to

other computational tools is their capability of learning by

example, a typical task where humans perform better than

procedural algorithms, especially where the complexity of the

data makes the design of regressive function impractical. In

recent years, ANNs have found widespread application in the

hydrological literature, especially as regression tools (Govin-

daraju and Rao, 2000). ANNs have also been used to build a

model for water vapor and carbon exchange in a forest

ecosystem, which does not require a detailed knowledge of

tree physiology (Hagen et al., 2006).

The attraction of using ANNs in a detection problem resides

in their ability to generalize results from a given set of

observations, i.e., as regressive models, without the need for

any detailed mechanistic understanding of the underlying

processes. The key idea is therefore to acquire an ‘‘integrated
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background’’, i.e., a set of CO2 measurements as a function of

other independent variables (e.g., soil-water saturation,

elevation, slope, geographic orientation, solar radiation, leaf

area index, permeability, etc.) prior to injection (or sufficiently

far away from the injection point that they are not affected by

seepage) and then to identify anomalies through long-term

monitoring that do not correlate with the expected ANN

prediction. This definition of anomaly implies (i) that the

background measurements must be uninfluenced by CO2

seepage, either by virtue of being made prior to CO2 injection

or at a location away from any potential seepage, (ii) the

anomaly is relatively constant over time, and (iii) that the

location and magnitude of the anomaly do not fluctuate

significantly with time (steady-state assumptions).

In practice one should implement the ANN procedure steps

as follows:
1. I
Fig

sim

an

reg

res
dentify a region around the planned injection site that

displays sufficient variability in topography and in other

independent variables.
2. M
easure the integrated background, i.e., the CO2 levels (flux

and concentration) as a function of the desired independent

variables either before injection or at a location that is not

influenced by potential CO2 seepage.
3. T
rain the ANN on the measurements collected as the

integrated background.
4. V
alidate the ANN by taking additional measurements of the

independent variables.

Fig. 5 illustrates the distribution of soil-water saturation

(black dots) as a function of the elevation for the simulated

case study shown in Fig. 4. Two simple three-layer feed-

forward ANNs with as little as two and three nodes in the

hidden layer, respectively, were trained on the elevation

inputs and saturation targets. The transfer function was

chosen to be equal to 2/(1 + exp(�2x)) � 1), in both cases. The
. 5 – Saturation vs. elevation for the numerical

ulations (dots). The blue and red lines represent a two-

d three-node ANN regression, respectively. The

ression coefficients were equal to 0.992 and 0.999,

pectively.
ANN regression function can easily be written explicitly with

the s(z) (saturation vs. elevation) function defined as

sðzÞ �
XN

i¼1

w2i
2

1þ expðwiz� biÞ
þ bNþ1 (6)

where N is the number of nodes. The number of free para-

meters was four and seven, for the two- and three-layer ANNs,

respectively. The results of the ANN modeling are shown in

Fig. 5. The correlation between the ANN model output (short-

dashed and long-dashed lines) and the targets (black dots) was

nearly equal to one in both cases, which means that the

elevation variable is capable alone of explaining the satura-

tion. Note that a classical multi-linear regression of the form

s �
PN

i¼1 aiz
i cannot perform equally well, because the linear

system matrix becomes badly scaled as soon as the number N

of free parameters becomes larger than five. Simple ANNs with

a small number of nodes can produce excellent data regres-

sion. Small values of the regression coefficient, however,

indicate the need for the introduction of other explanatory

variables.

4.4. Application of ANNs to anomaly detection

Following step 1 of the procedure sketched above, we select a

100 point grid in the upper left corner of the monitoring

domain of Figs. 3 and 4 at which locations we virtually sample

the soil-water saturation and vegetation ‘‘green-level’’. In

Fig. 6 we plot with red dots the sampling grid in the NW corner

that provides the integrated background model. We then

employ a feed-forward ANN with 20 nodes in the hidden layer.

From the correlation plot (right panel of Fig. 6), we can see that

the measurements from the original points (CO2 concentra-

tion) and from the ANN model outputs correlate very well.

If we make an independent line sampling (pink dots along

NW-SE trending line), far away both from the original grid and

the anomaly, we can see that the model that we have

constructed is capable of inferring the CO2 levels given only

the sampling of the soil saturation and vegetation level. This

constitutes a validation of the ANN regression as listed in step 4.

If we sample in or around the anomaly along a transect (labeled

with green dots), we observe that the measured points are now

anti-correlated with the ANN model, clearly indicating the

existence and location of the anomalous CO2 concentrations.

An anomaly is indicated when the ANN correlations consis-

tently are below a target threshold. Note that this lack of

correlation has to be interpreted in some meaningful statistical

sense. One measurement point could easily fall out of the best

correlation line without necessarily implying the presence of an

anomaly. If, however, many neighboring points do not follow

the background predictions, the confidence in identifying these

points as anomalous increases.
5. Optimization of seepage detection

5.1. Optimal direction problem

In the previous section, we illustrated a procedure aimed at

identifying a pseudo-steady seepage anomaly independent of



Fig. 6 – Application of the ANN technique. Left: The array of red dots represents a set of CO2 concentration measurements in

undisturbed conditions. Measurements at the purple dots are taken as a validation set for the ANN model. The green dots

represent measurements taken along a line crossing the anomalous seepage footprint. Right: Results of the ANN regression

model. The explanatory variables are the saturation field in Fig. 4 and the vegetation map in Fig. 3. The ANN provides an

excellent model for the undisturbed measurements (red dots) and for the validation set (purple dots). The measurements

across the anomalous seepage footprint (green dots) are anti-correlated with the ANN model and clearly indicate the

presence of an anomaly.
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its magnitude, and how this anomaly corresponds to a mini-

mum in a correlation map between expected and measured

values. This correlation map, however, is not known a priori

and only partial interpolations about actual measurements

can give hints about search directions. The amount of data

necessary for establishing a reliable integrated background

remains an open question that we plan to address in future

studies. The correlation map can be furthermore very noisy

and exhibit many local minima that do not correspond to a

real anomaly. What is needed is a strategy to indicate the

optimal search direction to locate anomalies, a problem we

refer to as the optimal direction problem.

Assuming that an anomaly does exist, an assumption that

cannot be verified until the detection process has ended,

finding the optimal search direction is a challenging task,

particularly when the starting point is far from the assumed

anomaly. The classical way to search for a minimum on a map

is exemplified by the well-known steepest descent algorithm.

In this strategy, the next sampling point is identified by finding

the steepest path around the prior search point. The steepest

gradient search is guaranteed to converge for convex func-

tions to an absolute minimum. If the function, however, is not

convex in the search interval, i.e., exhibits multiple extrema,

the algorithm will likely not converge unless the initial guess is

in the immediate vicinity of the global minimum. In practice,

the steepest descent algorithm and its variants perform very

well on smooth search landscapes and in the absence of local

minima, conditions unlikely to be found in the search for CO2

in natural ecosystems.

There is, however, an important limitation to the

steepest-descent algorithm. When the search landscape is

flat and the minimum is localized around a small region with
steep access, this class of algorithms fails in finding the

minimum. It also fails as soon as the search landscape is very

noisy and characterized by many local minima. The choice of

the appropriate minimization algorithm is an important

concern when each point is a field measurement and has a

significant cost.

Searching along a predefined grid implies that large areas

must be evaluated with very small grid intervals, and this is

not a particularly good strategy especially for point-type

measurements such as those made by accumulation cham-

bers. Our computer simulations (not shown here) suggest that

a random search strategy is even more expensive than a

predefined grid search with the same number of points. A

more sophisticated search strategy is therefore needed.

5.2. Evolutionary computation and swarm intelligence

Recently, a number of search strategies based on the concept

of evolutionary computation and swarm intelligence have

been proposed. Among these strategies, genetic algorithms

(GA) (Holland, 1992), particle swarm optimization (PSO)

(Eberhart and Kennedy, 1995), Ant Colony algorithms (Dorigo

and Stützle, 2004), and differential evolution (Storn and Price,

1995) algorithms have become very popular because of their

effectiveness in finding global minima in noisy search land-

scapes.

Most evolutionary computation algorithms display the

following structure:
1. R
andom generation of an initial population of individuals.
2. C
alculation of a fitness value for each individual of the

population.



i n t e r n a t i o n a l j o u r n a l o f g r e e n h o u s e g a s c o n t r o l 2 ( 2 0 0 8 ) 6 4 0 – 6 5 2 649
3. R
Fig

in

to

fu
eproduction of the population based on the fitness values

in 2.
4. I
f requirements are met, then stop. Otherwise go back to 2.

All these heuristic search methods, and their combina-

tions, can significantly differ in total number of sampling

points that are needed to converge to the global minimum. In

this work we will consider only the PSO algorithm and we give

the rationale of why this method can perform better than a GA.

GAs build on the Darwinian concept of survival of the

fittest, whereas the PSO philosophy is based on the concept of

social influence and social learning. In a GA, a population of

potential solutions selected at random samples the search

space. The fittest solutions, i.e., those that show small values

of the objective function, are selected for generation through

crossover and (random) mutation, whereas the less-fit

individuals are eliminated from the genetic pool. GA opera-

tors, such as random mutation and crossover, generate a new

population of individuals whose positions are somewhat

unpredictable and this can be a disadvantage when this

position represents the location of a field measurement.

PSO algorithms, on the other hand, have been inspired by

the observation of flocks of birds, swarms of insects, schools of

fish, and other collective social behaviors. A swarm of particles

is assigned a random position and velocity to sample the

search space. The particle direction at the next ‘‘time’’ step is

specified by a combination of the current particle direction, by

the particle local minimum position, and by the swarm’s

global minimum position. Unlike in GAs, particles in PSO keep

their individuality and can be tracked across time steps,
. 7 – Application of the PSO algorithm to the optimal detectio

itiated at random (top left) to explore the search space accordi

right and from top to bottom. The global minimum of the par

nction minimum indicated by the red seepage anomaly.
allowing a more efficient allocation of the path traveled by

technicians in the field when going from one point measure-

ment to the next. Note that we have a steady-state seepage

pattern but use a dynamic search strategy.

In Fig. 7 we illustrate the application of the PSO algorithm

(Birge, 2003) to the problem of finding the minimum of the

correlation map generated by the ANN described in the

previous section. The objective function to be minimized is

the regression coefficient between ANN model and field

measurements for the CO2 concentration. The search land-

scape is relatively flat because of the excellent ANN non-

linear model of integrated background, except at the seepage

anomaly, which can be seen at the coordinates (1000 m,

800 m) plotted in red where the CO2 concentration (and flux) is

anomalously high.

As shown in Fig. 7, we used PSO to locate the CO2 seepage

anomaly in the virtual landscape. The position and velocity of

four particles was initialized at random, and then the particles

explored the search space according to the PSO rules as shown

in the snapshots of the convergence process at different

evolution steps in Fig. 7. Current particle positions are plotted

as white dots, while the global minimum is indicated by a red

cross. Convergence to the global minimum was achieved in

the majority of the runs for different random initializations.

Additional analyses on the dependence of convergence on

number of points, so-called velocity of particles, initial

positions, etc. will need to be undertaken to understand

better convergence and convergence rates. We stress that

other minimization algorithms would fail in pinpointing this

particular seepage anomaly because of the flat and noisy
n of a seepage anomaly. Four particles (white dots) are

ng to the PSO rules. The evolution of the panels is from left

ticle swarm (red cross) converges consistently towards the



Fig. 8 – Flow of field monitoring and measuring showing

the steps of detection, pinpointing, and quantification.
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background with Ls � Li. We note that the method proposed in

this work is not limited to the detection of CO2 leakage, but can

be easily extended to the detection of other gases. It has been

proposed, for instance, that CH4, may be used as a proxy for

the evaluation of leakage potential from a carbon dioxide

enhanced oil recovery/sequestration project (Klusman,

2003a,b, 2006). However, the use of CH4 for indicating leakage

pathways from non-hydrocarbon reservoirs (e.g., deep brine

formations) has not been demonstrated.
6. Conclusions

6.1. Summary

Leakage of CO2 from a geologic storage site and its ultimate

seepage into the atmosphere is a matter of concern for the

effectiveness and public acceptance of CCS. In this work, we

discussed strategies for field measurements that optimally

characterize seepage, which may include determining that

seepage is occurring and subsequently pinpointing its location

and quantifying the seepage rate.

There are four characteristic length scales relevant to

seepage characterization that, together with a prescribed
maximum allowable seepage flux, amplification factor, and

measured background respiration flux, can be used to estimate

roughly the number of EC towers needed in a static grid for a

given injection rate. Monitoring networks can be classified into

two main classes, namely static and dynamic. The archetype of

a static network is the grid (e.g., a grid of eddy covariance

towers), whereas new measurement locations in a dynamic

network depend on the history of the measurements. The static

EC grid can be used to detect and roughly locate possible CO2

seepage, although numerous EC towers may be required

depending on the area of potential seepage, detection require-

ments, and backgroundrespiration. Pinpointing the locations of

seepage can be done using a dynamic approach once seepage is

detected and roughly located.

We used numerical simulations of a virtual site as an

example case on which to apply pinpointing strategies. The

seepage detection problem can be conveniently treated by

means of artificial neural networks that obviate the need for

mechanistic understanding of the complex natural processes

occurring to produce given background natural CO2 fluxes and

concentrations. ANNs provide a means to identify complex

non-linear correlations between background CO2 fluxes and

concentrations, and other explanatory variables of hydro-

geologic, atmospheric, geophysical, and topographic type. We

then defined seepage as an anomaly with respect to an

expected background, and showed how seepage measure-

ments are generally anti-correlated with expectations derived

from the ANN model. This method provides a reliable way to

identify seepage provided you know where to look.

The ANN method does not, however, provide a way to

identify the next point to be measured in a dynamic network

campaign with the objective of pinpointing seepage loca-

tions. For this, we propose application of a particle swarm

optimization algorithm aimed at overcoming the problem

associated with the typically flat, multi-minima, and highly

localized global minima surfaces which are characteristic of

natural ecosystem background fluxes and concentrations

that will be encountered in CCS applications. PSO provides

an efficient method to minimize the number of measure-

ments and the total distance that the field technician

needs to travel when going from one measurement point

to the next.

6.2. Recommendations

Based on the results of this work, we recommend that

monitoring networks be deployed in three distinct phases.

The flow of the process is shown in Fig. 8. Following definition

of the monitoring objective, the first phase involves the

deployment of a static monitoring network of, for instance, EC

towers equally spaced according to the estimates obtained as a

function of the admissible seepage rates and background

respiration. The second phase, which can proceed in parallel

with the first, involves the acquisition of finer-scale integrated

background measurements, typically point measurements,

which synthesize CO2 flux or concentrations as a function of

ecosystem explanatory variables in an ANN regressive model.

If the static network detects a possible seepage signal, a third

phase would be needed. In the third phase, deployment of a

dynamic monitoring network would be aimed at pinpointing
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the precise location of the seepage through directed measure-

ments, and quantifying it as to its magnitude and evolution.

While the findings and recommendations in this work were

based solely on theory and modeling, the motivation for the

work arises from the real-world application of CCS deploy-

ment to reduce CO2 emissions to the atmosphere. Given the

urgency needed to reduce CO2 emissions, and the need to

deploy CCS at minimal cost, research aimed at improving

monitoring and measuring precision, along with advanced

data analysis approaches as proposed in this study, will both

help to lower the needed amplification factor and thereby

increase the measurement length scales needed. We recom-

mend that novel methodologies be tested in ongoing field

tests of CCS technologies as well as at natural analog sites.

Improved methodologies based on field trials will be invalu-

able for developing cost-effective monitoring approaches.
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